

acatech – NATIONAL ACADEMY OF SCIENCE AND TECHNOLOGY

Smart Hybrid Energy Grids for Smart Regions

Prof. Dr. Sebastian Lehnhoff – acatech Project Group "Hybrid Energy Grids"

OFFIS – Institute for Information Technology R&D Division Energy

Munich, September 11th, 2013

Energy Supply Challenges

Smart Grids, Smart Cities, Smart Regions

- > Increasing energy feed-in from volatile decentralized sources
 - Increase in storage and transportation requirements
- > Flexibilization of power demand and supply (Smart Grids)
 - Timely (and regionally) coupling of demand/supply processes
- > Multi-domain flexibilization in Smart Cities → Smart Regions
 - Coupling of infrastructures (power/gas/heat/transportation)
 - Adequate coupling of processes?
- > acatech project group "Hybrid Energy Grids"
 - 30 representatives from industry, government and R&D
 - Technical Report "Hybrid Energy Grid for the Energy Turnaround ICT-Challenges"

Modeling of multi-domain process coupling...

R acatech

Power-to-Gas(-to-Power)

Process Coupling

Multi-Domain Process Coupling

Increase in Degrees of Freedom

Smart Cities: integration of power-, gas-, heat- and transportationsystems

- > Number of 1-dimensional process couplings
 - 3 Domains: 3
 - 4 Domains: 6

> Multi-dimensional process couplings

Minimization of process distances in hybrid energy systems utilizing Smart Grid methods, complementary methods in gas/heat/transportation-systems, process coupling...

Multi-Domain Process Coupling

Timely differentiated Availabilities in Smart Regions

Utilizing regional alternatives for fulfilling energy demands

- E.g.: heat can be produced from solar/electric energy or by combustion (biomass/gas)
 - Timely differentiated "process costs"
- > Where energy infrastructures overlap process coupling is possible
 - Conversion processes
 - "Bivalent consumers"
- > Energy demand fluctuates over time and space!
 - Spontaneous switching between energy sources and infrastructures

Multi-Domain Process Optimization

Beware of complexity trap

Design challenges:

- > Where do existing infrastructures support process coupling?
- > Where is the biggest potential for process coupling?

Operational challenges:

- > Conversion processes
- > Automation of process couplings (e.g. bivalent consumers)
- > Timely and spatially flexibilization along the Power(-to-{Gas;Heat,Mobility;Power})* process chain

Beware of complexity trap! [FEG2012]

- > fragmented, single-purpose, heterogeneous ICT
- > Inhomogeneous systems (high integration costs)
- > (High-)potential options for flexibilization will not be considered
- > Missing incentives for development/hybridization!

Quelle: M/490 Reference Architecture WG

Business Objectives

Polit. / Regulat. Framework

Subfunctions

DER

Customer Premise otocol

CEN-CENELEC-ETSI. 2011

Market

Enterprise

Zones

Operation

Station

Field

Process

Integrated Energy Information Systems

Overall System Optimization

- > Established ICT-concepts:
 - Decentralization/hierarchies
 - Reference architectures/models
- > Adequate design of the ICT-infrastructure necessary
 - Data exchange platform
 - "Internet of Energy"
- Standards for communication and automation
 - Definition of profiles
 - Tool development and support
 - Security!

Regulation Framework for Hybrid Energy Grids

- > Timely and spatially differentiation of coupling and storage processes
- > Identification of "relevant" domains
 - Storage and transport capacities (timely and spatially differentiable)
 - Comprehensive area-wide infrastructure
 - Decentralized (bidirectional/two-way) access
- Energy systems in Germany (ordered by total end user consumption)
 - Mineral oil
 - Gas
 - Power
 - Heat

Regulation Framework for Hybrid Energy Grids (cont'd)

Gas

Heat

8 Prof. Dr. Sebastian Lehnhoff, OFFIS – Institute for Information Technology

Evaluation of Process Chains in Hybrid Energy Grids

Identification of promising business/use cases >98% Source 65% 90% El. power from Power **Power-to-Gas** Gas photovoltaics Short-Dist. Transp. (Methanation) Power-to-Gas-to-Heat (Long-Dist. Transp 90% 95% Consumption 90% Gas Gas Gas-to-Heat (Long-term 44,1% Heat (Burner) Long-Dist. Transp. Storage)

- > Additional energy sectors/domains?
 - What about mobility/public transportiation?
- > Alternative (more efficient) coupling processes?
 - "Virtual" coupling processes
 - Compressor stations
 - Thermal industrial (melting) processes
- *"more electric power, less gas"* (and vice versa)
- Multivalent coupling processes (data centers, Smart City concepts etc.)

Virtual Coupling into the Mobility Domain

- > Multivalent, highly available coupling process
- > But: coupling process is "refueling" not "driving"
 - Tightly knitted, public/private stations/charging points
 - Coupling of power and gas grid via (gas) filling stations
- > Timely and spatially flexibilization of domain specific energy consumptions
 - Timely differentiable, dynamic pricing of fuels
 - Dense public/private stations/charging points

Mobility

Power-to-Mobility Efficiency: 80% / 90% (engine output, battery) Costs: low Gas-to-Mobility

Efficiency: 30% / 50% (CH₄ combustion engine, H₂ fuel cell)

Costs: low

Power

Gas

Hybrid Energy Grids for Smart Regions and the Energy Turnaround

- > Hybrid energy grids exhibit a highly increased complexity compared to "conventional" Smart Grids
 - Power, gas und (district) heating, supply systems for fuels
- > Automated operation only feasible with integrated ICT-concepts
 - "Energy information systems with distributed intelligence"
- > Design/optimization: regional approaches
 - Energy supply and demand fluctuate over time and space!
- > Identify adequate/efficient system architectures
- > Highlight migration paths

http://www.acatech.de/publikationen-hybridnetze

S. Lehnhoff, S. Rohjans, H.-J. Appelrath: *ICT-Challenges in Load Balancing across Multi-Domain Hybrid Energy Infrastructures*. In: it – Information Technology, 2/2013, ISSN 1611-2776.

http://www.acatech.de/publikationen-hybridnetze

Data Center as Multivalent Process Coupler

Smart City-Component

- Data center as energy conversion process:
 - Power-to-Heat: "very efficient heater with its own cooling system"
 - Large amounts of waste heat dependent on the cooling concept
 - Power grid connection point dimensioned for the maximum projected ICTperformance
 - Increasing energy density

Thank you!

Prof. Dr. Sebastian Lehnhoff R&D Division Energy lehnhoff@offis.de