Managing Infrastructure Deployment of Next Generation Networks and Optical Fibre Networks in a Competitive Environment

J. Scott Marcus, Senior Consultant

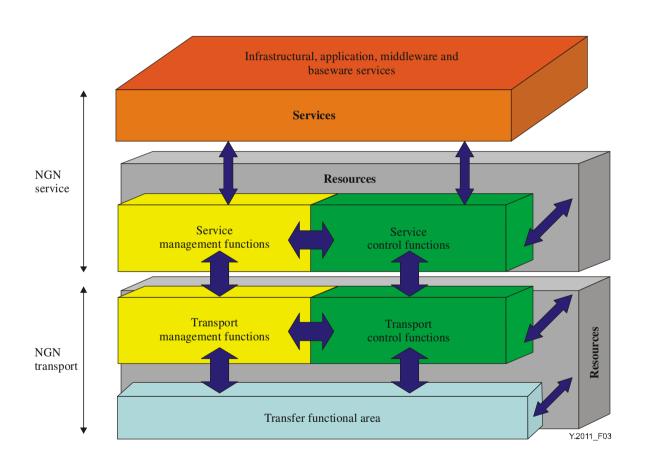
Münchner Kreis, 12th German-Japanese Symposium

Berlin, 20 April 2007

Infrastructure Deployment of NGNs and Optical Fibre Networks

- Different routes to NGN
 - NGN core versus NGN access
 - Funding mechanisms
 - Regulatory implications
- Key implications for regulators
 - Physical Layer
 - IP-based Network Layer
 - Interconnection
 - Assured Quality of Service (QoS)
 - Application Layer

Different routes to NGN


- British Telecom
 - Operational savings, faster time-to-market.
 - NGN core only, little emphasis on NGN access.
 - "Structural separation light" undertakings with Ofcom.
- KPN: Comprehensive revamping of both access and core networks.
 - Funded by sale of real estate no longer needed.
 - VDSL for the access network relatively short loops.
 - Challenges to subloop unbundling high density needed.
- DTAG: VDSL for similar reasons to KPN.
- FT
 - FTTB/FTTH in dense metropolitan areas
 - Many unresolved challenges as regards unbundling.

Key Implications for Regulators

- NGN carries further the separation of the service from the network.
 - Changes the character of competition.
 - Raises challenges to many non-SMP-based obligations.
- Market power
 - New forms of competition may mitigate some bottlenecks.
 - Last mile bottlenecks will nonetheless likely persist until at least three fully competitive facilities-based operators are well established in a geographic area.
 - New bottlenecks may emerge at the Network or the Applications Layer.

The layered structure of the NGN

TCP/IP	OSI
	Application
Application	Presentation
	Session
Transport	Transport
Internet	Network
Network access	Data Link
Physical	Physical

The Physical Layer

- NGN can support many kinds of physical and logical transmission media.
 - Fixed versus mobile.
 - Cable television.
 - ADSL
 - VDSL
 - FTTB/FTTH
- Some operators will not offer their own access at all (the provider operates an NGN core, but does offer its own access).
- Many operators will offer a hybrid of two or more of the above.
- Special regulatory challenges have emerged with:
 - VDSL
 - FTTH/FTTB

The Physical Layer: Access: VDSL

- VDSL supports only limited loop lengths.
 - Tends to be used only in countries or areas with short loops.
 - DSLAMs at the MDF could support only a limited fraction of the user base.
 - DSLAMs at the street cabinet could serve more users.
- Numerous regulatory challenges:
 - Impractical to deploy a second (or third...) street cabinet.
 - Limited ability to deploy a second (or third ...) DSLAM to the street cabinet due to (1) space, (2) manageability, and (3) heat dissipation.
 - Backhaul from the cabinet to the MDF is crucial to the business case; however, unlikely to be available other than from the incumbent. Duct availability a key concern.

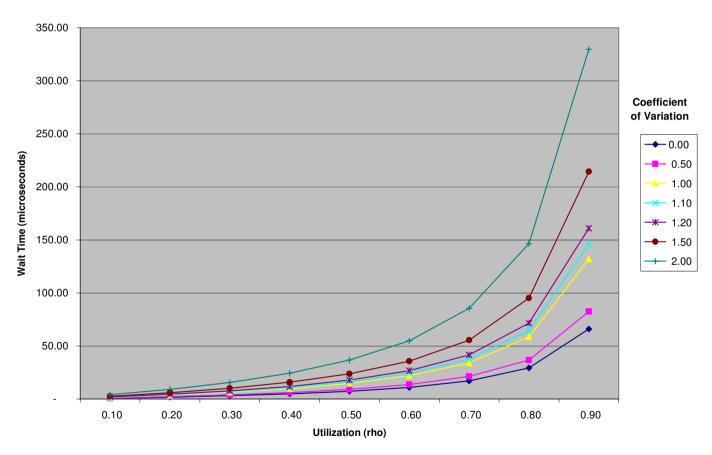
The Physical Layer: Access: FTTB/FTTH

- FTTH/FTTB will tend to be preferred
 - Where loop lengths are longer.
 - As an end game wherever high speed to the end user is desired.
- Substantial civil engineering costs.
- Significant regulatory challenges:
 - Last mile concerns with building wiring for muliple dwelling units.
 - Owners will not accept a second set of fiber.
 - Implies huge first mover advantage.
 - Unclear how to provide unbundled access in some cases, notably PON.
 - Ducts are again important.
- France is currently coordinating discussions with industry.

- Traditional telephony
 - Wholesale level
 - Calling Party's Network Pays (CPNP)
 - Private negotiated arrangements (à la Coase), often Bill and Keep
 - Retail level
 - Often Calling Party Pays (CPP)
 - Often (banded) flat rate
- Internet
 - Wholesale level
 - Private negotiated arrangements (à la Coase) with peers, often with no charges
 - Usually banded flat rate to transit customers
 - Retail level diverse, often flat rate

- CPNP wholesale arrangements will be difficult to sustain in their current form in an NGN world.
 - Competitive pressure from service providers who do not operate networks.
 - Difficult or impossible to use a surcharge on the *service* to pay for costs of the *network* when these are not necessarily provided by the same integrated firm.
 - Current metrics (minutes of use) correlate only weakly with real usage-based marginal costs.
 - The attribution of cost causation to the party placing the call was always questionable, and much more so in an NGN world.
 - Substantial challenges with measurement and accounting, especially where the service provider and the network operator are distinct entities.

- Private "Coasian" negotiated arrangements (with preconditions) have worked well, and are more likely to be sustainable.
 - Mobile operators and non-dominant fixed operators in the US,
 Canada, Singapore
 - Much higher utilization (MoU) than in Europe
 - Lower marginal consumer price (service-based revenue per MoU)
 - Substantially higher ARPU
 - Fewer distortions between fixed and mobile usage
 - No need for regulatory rate-setting
 - Internet arrangements
- Countries that implement very low termination rates (e.g. India) may be better positioned to make a transition.


- The inherent IP-based nature of the NGN potentially opens the network to third party applications, including VoIP.
 - Will best-efforts IP be fully open to competitors, or will incumbents with SMP prefer their own services?
 - Will IP with assured Quality of Service (QoS) be fully open to competitors, or will incumbents with SMP prefer their own services?
- Best-efforts IP-based services could, in most cases, enable effective competition to the incumbent's own QoS-enhanced applications.
- Operators may prefer a closed environment.

- Will the incumbent attempt to impact performance of best-efforts IP?
 - Intentional degradation
 - Failure to upgrade infrastructure as needed (equivalent)
- Regulatory remedies to degradation
 - Ex ante nondiscrimination obligations
 - Obligation to publish QoS under Article 22 USD
 - Competition law (foreclosure)

M/G/1 queueing analysis of link performance

(with clocking delay of 50 µsecs (284 byte packets) and a 155 Mbps link)

- For real time services such as voice telephony traffic, it is important that mean delay and variability of delay be held to low values.
 - Delay in excess of about 150 milliseconds causes "collisions".
 - Buffering can address variability as long as the mean and variance are not too great.
 - The buffer then represents a fixed increment to the propagation delay.
- For circuit speeds of 100 Mbps and up, queuing delays in a properly designed network will generally be well under a millisecond per hop under normal operating conditions.
- Propagation delay (speed of light) will tend to dominate any variable queuing delays under normal operating conditions.

- IMPLICATION: Most of the time, and under normal conditions, variable delay in the core of the network(s) is unlikely to be perceptible to the VoIP user.
- FURTHER IMPLICATION: Consumers will not willingly pay a large premium for a performance difference that they cannot perceive.
- Packet delay is more likely to be an issue:
 - For slower circuits at the edge of the network
 - For shared circuits (e.g. cable modem services)
 - When one or more circuits are saturated
 - When one or more components have failed
 - When a *force majeure* incident has occurred

The IP Network Layer: Transition concerns

- How long should operators be required to provide SMP remedies?
 - Incumbent should be able to upgrade its network.
 - Preserve competition, not individual competitors.
- If POIs for access and interconnection are unilaterally discontinued, what is the impact on competition?
 - Incumbent should be able to upgrade its network.
 - Risk of stranded competitor investments.
 - Preserve competition, not individual competitors.
 - Likely reliance on consultative mechanisms and on notice.

The Application Layer

- Will the migration to NGN facilitate or hinder competition with providers of application services?
 - Each layer of the NGN architecture is in principle open to competition.
 - IMS NGN is well-suited to either enabling or inhibiting third party access at the Application Layer.
- Operators with market power will likely prefer to maintain a closed "walled garden" rather than an open competitive environment.
- The degree to which this is a concern is unclear. Competition at the IP-based Network Layer might mitigate concerns with bottlenecks at the Application Layer.

wik-Consult GmbH
Postfach 2000
53588 Bad Honnef
Tel 02224-9225-0
Fax 02224-9225-68
eMail info@wik-consult.com
www.wik-consult.com

