

INSTITUT FÜR KOMMUNIKATIONSNETZE UND RECHNERSYSTEME Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kühn

The Seven Deadly Sins of ICT

- Green Computing and Communication -

Paul J. Kühn Institute of Communication Networks and Computer Engineering University of Stuttgart Phone: +49-711-685-68027 Fax: +49-711-685-67983 paul.j.kuehn@ikr.uni-stuttgart.de

Münchner Kreis Workshop on "Green ICT: Economic Computing and Communication?" ICM International Congress Center München, October 23, 2008

Overview

- **1 Observations on Power Consumption in IT**
- 2 The "7 Deadly Sins" of IT
- **3 Causes and Development Options**
 - **1. Device Technology**
 - 2. "Green Computing"
 - 3. Sleeping The Benefits of Doing Nothing
 - 4. Power Control Positive Results from Negative Feedback
- **4 Towards an Optimized Power Management**

1. Observations on Power Consumption in IT(1)

Moore's Law Doubling of Device Performance every 18 Months

by Integration Density: Microtechnology \rightarrow Nanotechnology Switching Speed: Microseconds \rightarrow Nanoseconds \rightarrow Picoseconds

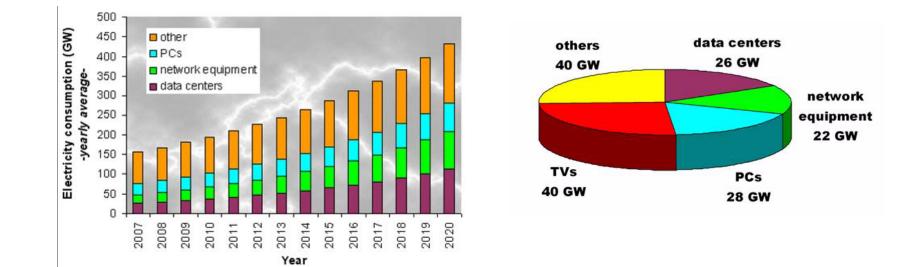
Power Consumption

Ρ

Institute of Communication Networks and Computer Engineering

1. Observations on Power Consumption in IT(2)

Measurements (Annual Electricity Consumption)

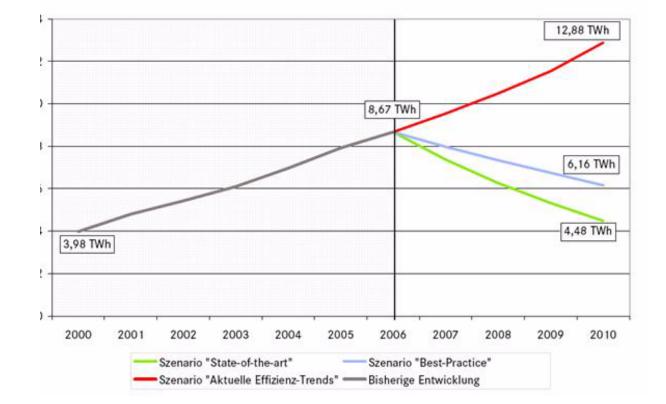

• US year 2000:

Device	Est. Numbers	Cons. TWh	Costs	Equiv.
Hubs	93.5 Mio	1.6		
LAN-Sw.	95.000	3.2		
WAN-Sw.	50.000	0.2		
Router	3.257	1.1		
Total (US)		6.1	10 ⁹ US \$	1 Nucl. Reactor
Total (World)		144		

- Annual increase in networking power consumption in this decade (estimated) US: 1 TWh
- Total power consumption of IT \approx 10% of all power consumption!

1. Observations on Power Consumption in IT(3)

• Annual Electricity Consumption in IT in Germany (2007-2020; 2010)



Note: P (Power Consumption) in Gigawatts (= 10^9 Watts) Annual Energy Consumption = P $\cdot \frac{8760h}{a}$ = 8.760 x P $\frac{TWh}{a}$

1 Nuclear Reactor Provides Typically 6 TWh

1. Observations on Power Consumption in IT(4)

• Annual Electricity Consumption in Computing Centers in Germany

Institute of Communication Networks and Computer Engineering

2. The "Seven Deadly Sins" of IT

Arts: The 7 Deadly Sins (Otto Dix, 1933, Staatl. Kunsthalle KA / Galerie der Stadt Stuttgart)

Institute of Communication Networks and Computer Engineering

2. The "Seven Deadly Sins" of IT

Туре

- (1) Device Power Consumption
- (2) Inefficient Operation
- (3) Cooling Systems
- (4) Ineffective Power Management
- (5) Wasted Power Consumption ("Always-On")
- (6) Massively Redundant Data Storage
- (7) Highly Redundant Network Traffic

Examples

Current Leakage

Design for Maximum Performance

Power Consumption of Cooling, Waste of Heat

No Systemwide Power Control

Permanent Activation

Useless Data Replications

CC, Exploders, Provisional Downloads

3.1 Device Technology

- Device Power Consumption
 Example: IBM Blades Power Supply 20%
 Processing and Caching 55%
 Memory 10%
 I/O Subsystems 5%
- End of Moore's Law → New Technologies
 Reduction of Leakage
 - ► Replacement of Silicon Oxyde by Carbon Nanotubes
 - Nanowire Devices
 - Molecular Electronics
 - Spin Devices (Quantum Computing)

(1)

3.2 "Green Computing" - Set of activities to reduce power consumption

- IBM Announcement "Big Green":
 - (2007) 1 Billion US \$/a reallocated Long-term strategy committment CO₂ reduction and computer power increase Effective cooling and waste heat usage Operational changes Virtualization

NSN Announcement:

- (11-20-2007) Design for Environment (DfE) Environmental Management System (EMS) Recycling of devices and products Energy-efficient telecom solutions see: www.nokiasiemensnetworks.com/
- EU: (7-17-2007)

Code of conduct on energy consumption of broadband equipment (version 2) see: EU Document Renewable Energies Unit Broadband Equipment Code of Conduct

Institute of Communication Networks and Computer Engineering

University of Stuttgart

(2)

Power Limitations for Broadband Terminal Equipment (as of 12-31-2009)

Source: EU Document Renewable Energies Unit, Broadband Equipment Code of Conduct (7-17-2007)

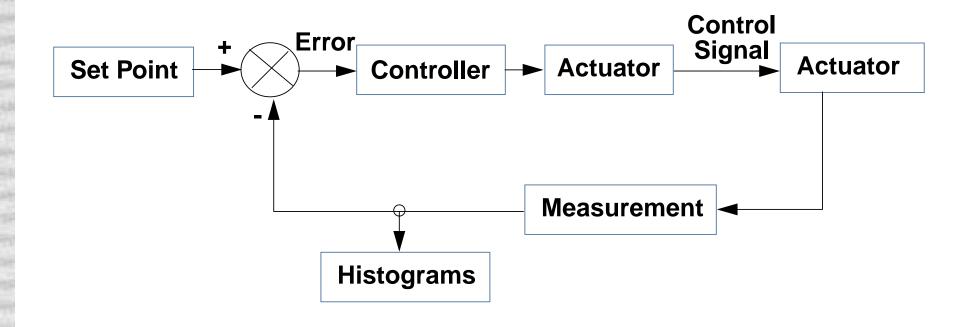
Terminal Equipment	Off State	Low Power State	On State
ADSL/VDLS Modem	0 W	0.8 W	1.5 W
VDLS Modem einschl. Ether- net Port, Router und Firewall	0.3 W	2.0 W	6.0 W
Optical Network Termination	0.3 W	(offen)	12.0 W
WLAN Access Point 802.11	0.3 W	2.0 W	6.0 W
VoIP Device	0.3 W	2.0 W	5.0 W
Network Equipment/Port			
ADSL 2+	-	0.8 W	1.2 W
VDSL 2	-	1.2 W	1.6 W
Wakeup Time	-	$\leq 1 \text{ s}$	≤ 1 s

3.3 Coordinated Sleeping - The Benefits of Doing Nothing

Example 1: System Power Management Support IBM POWER6 MP

see: IBM J. Res. & Dev., Vol. 51, No 6, November 2007, pp. 733-745

- On-Chip Support by Sensors, Actuators, Thermistors (Energy ScaleTM-Architecture)
- Thermal and Power Management Device
- Principle: Make use of application dependent power consumption
- Measures:
 - Pipeline Trottling (run/hold, instruction)
 - Multiple voltage domains
 - Voltage and frequency scaling
 - Processor idle modes
 - Dynamic memory modes
 - Overheat protection by sensor technology (on-the-chip)



Example 2: Sleep Mode of Telecommunication Equipment

IP-Phone:	5-10 W Continuous Power Consumption	
Analog Phone:	≈ 0 W Silence Period6 W Connection Period	
PC Online:	100s W Always-On Mode	
Router:	40 kW	
Question:	When and how to sleep? Coordinated Sleeping	
see:	"Greening of the Internet" ACM SIGCOMM'03, Aug. 25-29, 2003, Karlsruhe	
Measure:	Dynamic Control of Low Power Mode	

3.4 Power Control - Positive Results from Negative Feedback

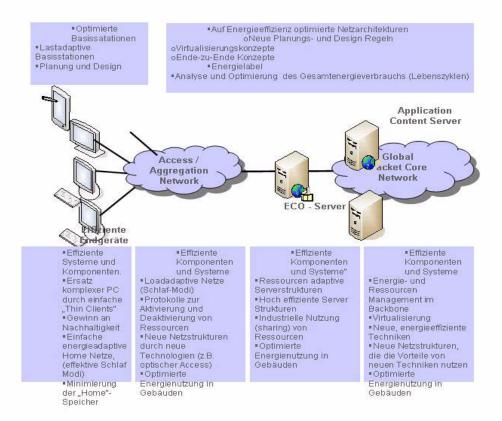
Example: EnergyScaleTM for IBM POWER6 Microprocessor see: *IBM J. Res. & Dev., Vol. 51, No 6, Nov. 2007, pp. 775-785*

Institute of Communication Networks and Computer Engineering

University of Stuttgart

(6)

3.5 Virtualization


- Dynamic Workload Assignment to Active Resources
- Multiprocessing Systems
- Network Level Multiprocessing
- Workload-Dependent Activation Adaptive Scheduling Algorithms

3.6 Redundancy Reduction (Storage, Transmission)

- Much Information is Stored on Different Memories / Databases
- Much Information is Distributed to Multiple Destinations (Exploders, Copy Operations, ...)
- Distribution of Reference Links Rather Than Distribution of Data
- Trade-Off Between Storage / Transmission Costs

4. Towards an Optimized Power Management (1)

IT Scenario and Challenges

Institute of Communication Networks and Computer Engineering

4. Towards an Optimized Power Management (2)

Research and Development Challenges

- Micro-, Nano- and Optoelectronic Technologies
 - CMOS and III/V Semiconductors
 - New Technologies (Nanotubes, Molecular Electronics, Quantum Computing)
- Protocols for the Activation/Deactivation of Network Elements
 - Components, Systems, Network Level Consideration (Multi-Scale Consid.)
 - Power Monitoring on Chip, Device, Computer/Router/Base Station Equipment, Network
 - Power Control
 - Protocols and Standardization
 - Thin Clients and Virtualization
- Modelling, Performance Analysis and Optimization
 - Power Consumption, Economic and Cost Models
 - System and Network Models
 - Placement of Resources
 - Dynamic Load Models and Scheduling for Resource Sharing (Virtualization)
 - Reliability and Availability of Resources and Services
 - Sustainability
 - Optimization

4. Towards an Optimized Power Management (3)

• Power saving is profitable for several reasons

- ➡ to increase speed (next 10 years: bandwidth increase by factor 100!)
- ➡ to save direct power costs

New Design Objectives

➡ optimize computation performance watt

• Many Degrees of Freedom

- new technologies
- ➡ power aware operation
- economic use of data
- ➡ protocol design
- Revised System Architectures

⇒ Optimized Power Management as Competitive Asset

Weiterführende Quellen zur allgemeinen Thematik der Energieversorgung

- Smart 2020: Enabling the Low Carbon Economy in the Information Age The Climate Group, Global eSustainability Initiative (GeSI), 2008 info@theclimategroup.org
- Der Beitrag moderner Technologien zu Klimaschutz und Energieversorgung - Stellungnahme zur Bedeutung der Energietechnik für eine nachhaltige Energieversorgung acatech Themennetzwerk Energie, Bau, Infrastruktur und Umwelt
- Die Zukunft der Energieversorgung in Deutschland Herausforderungen-Perspektiven-Lösungswege
 B. Hillmeier (Hrsg.), acatech-Symposium, 21.11.2006 über: www.irb.fraunhofer.de
- Dezentrale Energieversorgung 2020
 VDE-Studie, 2007
 www.vde.com/etg